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Abstract-The method of direct numerical simulation is used to investigate temperature fluctuations in fully 
developed turbulent liquid metal flows. Subgrid scale models using one transport equation account for the 
turbulence not resolved by the finite difference grid. A special subgrid scale heat flux model for liquid metal 
flows is deduced together with a method ofcalculating the model coefficients. At very small Peclet numbers 
the temperatures become independent of model parameters. 

Numerical results for the Nusselt number in plane channels and for radial temperature and eddy 
conductivity profiles in annuli agree with published data. Nusselt numbers determined numerically for 
annuli indicate that many empirical correlations overestimate the influence of the ratio of radii. The 
numerical results for the eddy conductivity profiles may be used to reduce these problems. The statistical 
properties of the temperature fluctuations simulated are within the scatter band of experimental data. The 
numerical results confirm Lawn’s theory, giving reasonable heat flux correlation coefficients which depend 

only weakly on the problem marking parameters. 
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NOMENCLATURE 

constant thermal diffusivity ; 
constant specific heat capacity; 
subgrid scale heat flux coefficients ; 
channel width, R, - R, ; 
turbulence energy, power spectral density; 
grid surface, V/Axj; 
Nusselt number; 
pressure; 
Peclet number, Re Pr ; 
friction Peclet number, Re* Pr; 
Prandtl number, v/a; 
turbulent Prandtl number, ~,,JE~; 

radial heat flux ; 
specific volumetric heat source; 
inner, outer wall radii (Fig. 1); 
Reynolds number, “(u,)ZD/v; 
friction Reynolds number, u*L)/v; 
time; 
temperature; 
universal temperature, T/T* ; 
heat flux temperature, &/(pc,u*); 
typical relative standard deviation; 
velocity component, indices refer to Fig. 1; 
friction velocity, J&,/p); 
grid volume, Ax, Ax2 AX, ; 
periodicity lengths, see Fig. 1; 
grid widths; 

4lv eddy diffusivity for momentum, 

- +44)i(au,ia~,>; 
V, kinematic viscosity; 

P> constant specific density; 

YT? correction factor in the subgrid scale heat 
flux model, yT L 1; 

f, radial shear stress. 

Indices 

bl, space indices, Fig. 1; 

f, turbulent ; 
T temperature; 
w, wall. 

Operator for any quantity Y 

(Y), time mean value; 
“(Y), channel volume mean value; 
“Y, 
‘F, 

mesh cell volume mean value, fy Y du; 

y, 
mesh cell surface mean value, fjr Y d'f ; 
average over both walls, cart. k = 0, cyl. k 
= 1, 

U’w,R: + Yw,R:MR: f R:); 

y’, fluctuating part of Y’ = Y - (Y}, and Y 
= y._jy, 

wall distance, mostly y = R - R,. 1. INTRODUCTION 

Greek symbols 

4, central finite difference operator; 
5 turbulence dissipation; 
&Ii, eddy diffusivity for 

- (4 T’XJTl&>; 
heat, 

WORKING conditions in heat generating fuel elements 
of liquid metal cooled fast breeder reactors extend 
from high Reynolds number turbulent flows for nor- 
mal operation down to laminar flows in case of decay 
heat removal. Thus, the models used to calculate the 
detailed temperature fields within the fuel elements 



must account for molecular and turbulent heat trans- 
ports alike. Usually, statistical turbulence models are 
applied which are based on the Reynolds equations. In 

most cases the unknown turbulent heat fluxes are 
modeled by the eddy diffusivity concept. The experi- 
mental determination of the eddy diffusivity for heat 
(= eddy conductivity) i;ll is difficult, due to many 

problems associated with the use of liquid metals. The 
theoretical way of applying formulations for the 
turbulent Prandtl number Pu, = c,,,.!x~, suffers from the 

same problems, because the models have to be fitted 
against experimental data. 

Even after recent publications on the subject ofeddy 

conductivities in liquid metal flows there are still many 
open problems. In [l] a large number of experimental 

data are summarized for the Nusselt number Nu. the 
universal logarithmic temperature profile ‘F+ and for 
the turbulent Prandtl number. In the region where 

both the velocity and temperature profiles follow 
logarithmic laws, the data shows a constant turbulent 
Prandtl number depending neither on the wall dis- 
tance J. nor on the molecular Prandtl number Pr This 
cannot be used for low Peclet number flows. because in 

this case, the conductive sublayer extends from the 

wall almost to the center of the channel. Consequently. 
there is no region of a logarithmic temperature profile. 

Reynolds [2] discusses and classifies 30 different 
methods of predicting turbulent Prandtl numbers. 
Some methodological problems become evident, for 
example, missing or wrong functional dependences on 
the wall distance, the molecular Prandtl number. or 
the Reynolds number. In the work by Dutt [3], some 
discrepancies are noted between experimental and 

theoretically predicted data, but doubts are thrown 

upon the experimental data. Thermal contact re- 
sistance, incomplete wetting and longitudinal con- 

duction appear to be the main reasons. This may be 

confirmed using the publication by Lawn 141. Lawn 
develops a spectral theory to predict turbulent tem- 
perature fluctuations in liquid metals. In attempting to 

check this theory by summarizing experimental data 
for the turbulent Prandtl number, for the turbulent 
heat flux, for the RMS value of temperature Huc- 
tuations and cross stream velocity fluctuations, and for 
the heat flux correlation coefficients, he had to COW 

elude that many of the published data arc in error 
because they show correlation coefficients greater than 

one. 
In this work. the direct numerical simulation tech- 

nique is used to calculate turbulent liquid metal flows 
in plane channels and annuli. The method is based on a 
finite difference formulation of the complete time 
dependent three-dimensional mass, momentum, and 
energy equations for the gross scale part of turbulence. 
The small scales, which are not directly resolved by the 
finite difference grid, are represented by special subgrid 
scale models. Such a method was firstly applied to the 
momentum transport in channels by Deardorff [5] for 
inviscid flows, and by Schumann [6] for flows at finite 
Reynolds numbers. This author developed a model 

which is also applicable to low Reynolds number flows 
and which includes heat transports at different Prandtl 
numbers [7, 81. The subgrid scale model coefficients 
are calculated by the theory of isotropic turbulence. In 
the first part of this work the peculiarities of the model 

and of the theory to calculate the coefficients. which 
correspond to applications to low Prandtl numbers. 

are discussed. Then the model 15 applied to the 
simulation of liquid metal flows. The purpose of this 

work is to predict statistical data for temperature 

fluctuations in some exemplary ilows. The results can 
be used for the development of statistical turbulence 

models. The numerical results, for example. confirm 
the spectral theory of Lawn cited above. 

In this Section a brief description of the basic 
principles of the method ofdirect numerical simulation 
and of the computer model used is given. More details 
about the derivation and the numerical solution of the 
basic equations are found In [ 7. R 1 

The method of direct numerical simulation of 
turbulent Rows is based on the complete three- 

dimensional non-stationary equations for the con- 
servation of mass, momentum and heat. For appli- 
cation of finite difference schemes these basic equa- 

tions are transformed to a finite difference form for the 
mesh cell averaged variables Y (Y any quantity) by 
formal integration over the volume I/= Au, Ax2 AX + of 
one mesh cell. When averaging partial space de- 
rivatives the Gaussian theorem leads directly to finite 

differences cij’Yfor surface averaged values ‘r wherej 
denotes the normal of the respective mesh cell surface 
‘F. The resultant averaged equations for mass. mom- 

cntum and thermal energy read as follows (for sim- 
plicity, Cartesian coordinates are used here ; actually. 
cylindrical coordinates are used in the computer 

code) 

,$‘Ii, 0 

The summaCon convention is used for repeated lower 
indices. These equations are made dimensionless by 

means of the channel width D, the friction velocity U$ 

averaged over both walls, the time scale r* = D,h*, and 

the heat flux temperature T* = &,/(~K,u*)~ Con- 
sequently, the Reynolds number is defined as Re* 

= u*D/b’, and the Peclet number is defined as Pr’ 
= RP* Pr. Q is the specific volumetric heat source. 



Turbulent temperature fluctuations in liquid metals 477 

In the TURBIT-2 computer code [7] applied here 
the partial derivatives which still remain in equation 
(l), and the quantities not defined on the staggered grid 
used are approximated in a linear manner. For time 
integration an explicit mixed Euler leap frog scheme is 
used in combination with Galilean transformations of 
the mean velocity and temperature fields to maximize 
the permissible time step widths. The calculation of 
the pressure field follows the well-known method of 
solving a Poisson equation by means of the fast 
Fourier transformation. 

The geometries modeled in the computer program 
are infinite plane channels and annuli with different 
radius ratios RI/R,. The infinity is due to the per- 
iodicity of the velocity and temperature fields in the 
mean flow direction x1 and spanwise direction x2. The 
periodicity lengths X, = IMAx, and X, = .iMAx2 
(see Fig. I) are prescribed via the co~esponding 
numbers of mesh cells IM and JM, and via the 
respectivegrid widths Ax, and A+ Due to periodicity, 
axial gradients in the temperature field cannot be 
recorded easily. A possible transformation is given in 
[7], but is not used here. 

The wall conditions are mostly form~at~ exactly. 
Important exceptions are the wall shear stress 

r, = - l/Re* 3m 

and the normal wall heat flux 

4, = - l/Pe* 3ZjZ&. 

In turbulent channel flows with Pr > 0.7, both gra- 
dients show strong changes near the wall which cannot 
be resolved with the grids used. Therefore these wall 
fluxes are approximated consistent with the universal 
velocity and temperature profiles. The method ac- 
counts for influences of the wall roughness, Reynolds 
number, and grid resolution capabilities. For liquid 
metal flows no wall functions need to be used for the 
wall heat flux because of the large spatial extension of 
the conductive sublayer, which is directly resolved by 
the grids used. Thus, a valid approximation of the wall 
heat flux in case of liquid metal flows is 

1 3dT 
qw= --- 

Pe* ax3 N &c7; - 7-w) (2) 
3 

where VT1 is the temperature in the grid cell adjacent to 
the wall and T,,, is the wall temperature. 

2.2. Subgrid scale heat frux model for liquid metals dissipation = 

2.2.1. Formulation of subgrid scale heat puxes. The 
basic equations (1) contain averaged products of 
velocities and temperature. In a first step we split the 
unknown terms by spIitting the dependent variables in 

a large scale part “Y directly resolved by the grid and in 
a subgrid scale part Y’, which represents the unre- 

solved fluctuating part of Y= 7 + Y’. This yields 
these equations, which are still accurate: 

--. 

(“6;) = (K) - (&6jFG Sji?;> (7) 

These equations are taken from a formally deduced 
conservation equation for the subgrid scale tempera- 

ture variances. The overbar ----I denotes linear 
averaging over two neighbouring values in the j 
direction. From equations (4), (6) and (7) one gets : 

J--- i-i- fyy 
UjUi = Uj Ui + UjUi 

Only for the subgrid scale parts must model assump 
tions be introduced. The models used in the code 
have been described, and extensively tested over a wide 
range of Reynolds numbers, Prandtl numbers, ratios of 
radii, and space dependent wall roughnesses [7-91. 
Here emphasis is put on the discussion of the strong 
influence of molecular conduction on the subgrid scale 
heat flux model in case of liquid metal flows. The 
model for such flows is the following: 

.‘u;T’ = - jaJj(“r - (“7 )) (4a) 

j = 1,2,3. 

This means that we assume gradient diffusion pro- 
portional to effective eddy conductivities ja, and to 
local gradients of the temperature fluctuations. The 
eddy conductivities are modeled by a kind of Prandtl- 
energy-length-scale model. The length and energy 
scales chosen account for the fact that the influence of 
the model tends to become zero with increasing spatial 
resolution. The characteristic length scale is jF’/‘. The 
characteristic energy scale is the subgrid scale kinetic 

energy “E’ within the area jF: 

J 
IE’ = ; (US - “;,2. (5) 

This energy is also used in the momentum subgrid 
scale model. It is calculated from an additional con- 
servation equation which is solved simultaneously 
with equation (1). 

2.2.2. Calculation of model coejicients. The coef- 
ficient jC, in equation (4b) is introduced to correct for 
geometrical anisotropies of the grid. It depends only 
on grid parameters and is of the order one; in case of 
isotropic mesh cells, jC, = 1. The coefficient dominat- 
ing in our special application is CTZ. It has to be 
determined so that the production of subgrid scale 
temperature variances caused by this model -. 

production = (z ‘ajF> (6) 

is equal, in the statistical mean, to its subgrid scale 

dissipation ?$: 
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plane channel flow (K) 

n 

The denominator has been split into two parts to 

replace the triple correlations, which introduces a 
correction factor y-1 of the order one (or 2 1). 

We may assume that subgrid scale turbulence, 
which is mostly associated with high wave numbers, is 
nearly independent of boundary conditions etc. and 
can therefore be regarded as locally isotropic. So, the 
theory of isotropic turbulence as given, for example, in 
[lo] can be used to calculate all correlations contained 
in equation (8) on the basis of the well-known Kolmo- 

gorov spectrum for the kinetic energy of turbulence 
E(k) and on the basis of the Batchelor spectrum for 
twice the energy of the temperature fluctuations E,(k) : 

E(k) = 2 (2.)’ 3 /.- 3 3 

ET(k) = p (I:) “3 (I:~) km5 3. (9) 

For the constants in the spectra we use CI = 1.5 and fl 

= 1.3 determined in a literature review. 

An approximate formula to estimate C,, on the 
basis of equation (9) is given in [ 111. The complete 
theory to calculate all terms contained in equation (8) 

and similarly for jC,, is very extensive and complicated 
[7]. Here we must use the complete theory, because all 
geometric details of the anisotropic grid and molecular 
conduction must be taken into account. In the follow- 

ing result the functions ,fi(A.xj). which are of no special 
interest here, are of the order one and depend only on 
grid parameters : 

The dissipation l:r of temperature variances has can- 

celled out. The second terms of the numerators of 
equations (8) and (10) represent the dissipation in the 
temperature field resolved directly. These terms are 
important only in those cases in which the Peclet 

number and the mesh volume are small. This means 
that in cases in which the turbulent temperature 
fluctuations are almost totally contained in the large- 

scale structure resolved directly, the dissipation (e) is 

an additional unknown. A useful approximation for 
turbulent channel flow purposes is deduced from the 
assumption of equality of production = - (u~u\> 
?(u,)/?x~, and dissipation of kinetic energy. Appli- 
cation of the Prandtl mixing length model and uni- 
versal logarithmic velocity profile furnishes: 

We use K = 0.4 for the Karman constant. Equation 
(11) makes the subgrid scale coefficient CT2 [equation 
(lo)] dependent on the wall distance y. A numerical 
evaluation of equations (9)-( 11) is shown in Fig. 2 for 
an equidistant Cartesian grid with Ax, = Ax, = l/8 

’ &)A AL -“3 

annular flow (Z) 

F-IL 1. Channel geometries under consideration. In both 
channels the time mean flow vector (u) points in the .x1- 

direction. 

and Ax, = l/16, later denoted grid K7. In accordance 
with the higher turbulent temperature fluctuations 
near the wall, and the correspondingly larger extension 

of the spectra of the temperature fluctuations to higher 
wave numbers, the model shows increasing values of 

Cr, for decreasing wall distance and for increasing 
Prandtl number. 

The correction factor y7 included in equation IX) 
must be determined empirically. In a sensitivity study 
it was tried in [7,8] to adjust yr by using the coarse K7 
grid for the simulation of a high-Reynolds number 
flow with Pr = 0.7 ; this is a case in which the subgrid 
scale heat flux mode1 should be important. Neverthe- 

less, yr showed very weak influences only. The high 
insensitivity to changes in yr is even more pronounced 
for lower Prandtl numbers. In Fig. 3, some results for 
five simulations of the flow of liquid sodium with 
different yr are shown. Theoretically, one expects ;‘[ 
2 1. For this range, almost no influence can be 

detected, although y.r extends over two orders of 
magnitude and the coefficients c‘, 2 are equal to zero 
only in the inner third of the channel. In order to use an 

unchanged turbulent subgrid-scale Prandtl number. 
the same value ;lr. = 1.4 was chosen for all Prandtl 

numbers as in the subgrid scale model for the momen- 

tum fluxes. 

3. CASE SPECIFICATIONS .AWt) 

INITIAL COYDITIOYS 

Several calculations with different Reynolds num- 

bers chosen at random were carried out for a plane 
channel and an annulus (Table 1) with the Prandtl 
number of liquid sodium under reactor conditions (Pr 
= 0.007). The resulting Reynolds number Re is related 
to Re* prescribed, the channel average of the calcu- 
lated mean velocity “(u,), and the friction coefficient 
(‘r : 
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0.20- 
CT2 

:I 33 L 
2Ctzs Re*= tnnn 

0.05- 3 Ctz , Re*= 10 000 

L CT2 a Re*= 10000 

FIG. 2. Calculated coefficient Crz (yr = 1.0) for grid K7 as a function of the Prandtl number. Parameters are 
the friction Reynolds number and the mesh index Kin the x3-direction [y(K = 1) = 0.0313 = mesh adjacent 

to the wall, y(K = 8) = 0.469 = mesh adjacent to the center]. 

Re* = Re/(Z”(u,)) = Re/2J(c,/8). (12) 

The calculations of the flow of liquid mercury in an 
annulus, Pr = 0.0214, refer to the experiments by 
Dwyer et al. [ 121. The calculations in air, Pr = 0.7 (I), 
have been added to show the steadiness of numerical 
results. 

The thermal boundary conditions for the annuli are 
adiabatic outer walls and prescribed uniform wall heat 
fluxes at the heated inner walls. The plane channel 
flows of sodium are heated by volumetric heat sources 
within the fluid and cooled at the walls by prescribed 
uniform wall temperatures. These boundary con- 
ditions make the temperature profiles in the plane 
channels directly comparable to the profiles in uni- 
formly cooled or heated pipes. The plane channel flow 
of air is cooled at wall w 1 by a prescribed constant wall 
temperature, and heated at wall w2 by a constant heat 
flux. 

To start the numerical time integration of equations 
(l), nearly arbitrary initial data for the three velocity 
components and for the temperature can be used ; 
however, in order to shorten the computer time 
necessary to reach a fully developed flow we use the 
universal logarithmic laws for the mean of aI and T 
and zero for the mean of u2 and uj. A pseudo-random 
number generator is used to superimpose upon these 
mean values random fluctuations with amplitudes 
corresponding to the expected RMS-value profiles. 

Better initial data have been deduced for the case with 
Pe = 350, which uses the unchanged numerical results 
for the velocity fields of the case with Pe = 35 500. 

The parameters of the finite difference grids used are 
listed in Table 2. The Cartesian grids K use 2048 or 
8192 mesh cells ; the cylindrical grids Z use 4096 or 
16384 mesh cells. The periodicity lengths @chosen for 
the circumferential direction in the annuli allow to 
record one quarter or half of the channel, which seems 
to be appropriate for the radius ratios under con- 
sideration [7]. The assignment to the cases of the given 
equidistant, but not equally sided, grids is shown in 
Table 1. 

For the parameters of each case the radial profiles of 
all coefficients of the total subgrid scale model must be 
calculated. For example, the complete theory in- 
dicated in equations (8)-(11) leads to the results for 
CTZ listed in Table 3. For the three cases with the 
lowest Peclet numbers no subgrid scale heat flux 
model is necessary. As was to be expected from Fig. 2, 
increasing Peclet numbers make CT2 become non- 
zero, predominately near the walls, in annuli, es- 
pecially near the outer walls. For the two highest 
Peclet numbers the subgrid scale heat flux coefficient is 
approximately constant all over the channels. For 
these two cases the complete subgrid scale heat flux 
model has been used as given in [7, 81, whereas the 
simpler model given in equation (4) has been used for 
all liquid metal flows. 

Table 1. Case specifications. The grid specifications follow Table 2 

Pr Re Pe 
Thermal boundary 

RJR2 Grid conditions e 

0.007 46000 322 0.25 Z9 &, = 1, gw2 = 0 
50000 350 1.0 K2.2 r,, = r,, = 0 

100000 700 0.25 22.2 fjW1 = 1, QWZ = 0 
280000 1960 1.0 K7 T,,,, = T,, = 0 

0.0214 100000 2140 0.479 22.2 &I = 1, k2 = 0 
145300 3110 0.479 22.2 

0.7 
4W1 = 1, L2 = 0 

50000 35000 0.25 22.2 
0.71 

L, = 1, k2 = 0 
50000 35 500 1.0 K2.2 T,, = 0, cjv2 = - 1 
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-- -* 

Re = 280‘000 
Pr = 0.007 

’ Frc;. 3. insensitivity oftemperature results to changes ofcorrection factor ;rT with grid K7; max. and mm. are 
taken from the lateral profiles. 

4. NUMERICAL RESULTS 

Typical computer times for an IBM 370,068 and the 
numbers of time steps AIT needed to reach fully 
developed flow and an additional time interval At,, for 
evaluation are given for each grid in Table 2 and for 
each case in Table 4. The channel lengths 1 covered are 
always greater than 50 channel widths, which is 
sufficient to reach fully developed flow. 

4.1. Phenomenologicai results 
Contour-line plots of the resolved instantaneous 

turbulent temperature fluctuations are shown in Fig. 4 
for different annular flows with different molecular 
Prandtl numbers. The isolines show larger tempera- 
ture fluctuations near the lower heated wall than near 
the upper adiabatic wall. With increasing Prandtl 
number the amplitude of the fluctuations increases, 
and the location of its maximum moves closer to the 
wall. The patterns show a predominant inclination 
from the walls in the Z-direction of the mean velocity 
to the center of the channel. The spatial extension of 
these structures decreases with increasing Prandtl 
number. In case of liquid sodium, the dominant 
structures are much more spatially extended than the 
typical grid width. 

The same behaviour can be detected in cross- 
sections perpendicular to the mean flow direction (Fig. 
5). In addition, these sections seem to show mainly 
large scale structures in the centre of the channels, 
whereas the scales are smaller near the heated walls. 
Thus we find temperature fluctuations with higher 
wave numbers in the main productive region near the 
heated wall, and with lower wave numbers in the inner 
part of the channel. This qualitative result agrees with 
the importance of the temperature subgrid scale model 
as given by the theoretical result for Crr in Table 3. 

4.2. Profiles @temperature statistics 
For quantitative evaluation of the time dependent 

numerical results mean values are taken as averages 
over planes parallel to the walls. In addition, these 
mean values have been averaged over 21 to 43 different 
time steps equidistantly distributed within the final 
time intervals At,, (Table 4). In the same table some 
results are included which were calculated from the 
velocity fields and used for normalization purposes. 
The calculated velocity and pressure fields are not 
verified in this work. Those results, which do not 
depend on the molecular Prandtl number, were ve- 
rified in [7--91. 

Table 2. C&id specifications and typical computing times. fM, JM and KM 
denote the number of mesh cells in the three space directions 

Grid specifications K7 K2.2 Z9 22.2 
-. 

IM (X,, 2) 16 32 16 32 
J!vf (.X2.9) 8 16 16 32 
KIV (s3. R) 16 16 16 16 
X. 2 3.2 2 3.2 
Xi,@ 1 2 SC/2 
Number of time steps 2690 1875 3080 2& 
CPU-time, IBM 3701168 41 min 2.5 h 2h 7h 
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Table 3. Results for C,,(K) for mesh cell No. K = 1 near the wall w,, for K = 8 near the center of the channel, and for 
K = KM near the wall w2. The calculated values are divided by yr = 1.4 

Pr 

0.007 

0.0214 

0.7 
0.71 

Fe Grid C,,(f) C,,(g) G2ww 

322 29 0.0 0.0 0.0 
350 K2.2 0.0 0.0 0.0 
700 22.2 0.0 0.0 0.0 

1960 x7 0.067 0.0 0.067 
2140 22.2 0.065 0.0 0.019 
3110 22.2 0.08 1 0.030 0.090 

35ooo 22.2 0.118 0.118 0.123 
35 SO0 K2.2 0.123 0.118 0.123 

CT2 = 0 for 
R - RJ/(Rz - RI) 

..-I___ 

o-1 
o-1 
o-1 

0.31-0.69 
0.440.5 

-_ 
- 
-. 

Table 4. Time intervals t with NT time steps, resuhant channei mean velocities, covered channel lengths f, resultant wall shear stresses, 
distances y from the wall wI of zero turbulent shear stress, friction factors err and number of time steps ANT,, within the final time 

intervals At,, used for time averaging 
-I_ . 

Pe NT ?!!I 1 4 4 
t 

G ii tf tf 
Y (T = 0) Cf AN Tav At av 

322 3.16 3080 19.19 60.6 1.063 0.984 0.376 0.0217 28 1.16 
350 8.24* 4225 19.36 159.5 1.0 1.0 0.5 0.0213 23 2.02 
700 3.57 3875 20.93 74.1 1.072 0.981 0.376 0.0183 43 1.25 

1960 6.97 2690 23.25 162.1 1.0 1.0 0.5 0.0148 21 2.69 
2140 5.21 2450 20.88 108.8 1.037 0.982 0.432 0.0183 32 2.34 
3110 20.4 9450 22.43 457.6 1.049 0.976 0.448 0.0159 30 3.24 

35000 4.51 2625 19.61 88.4 1.071 0.981 0.376 0.0208 27 1.71 
3.5 500 4.00 1875 19.47 77.9 1.0 1.0 0.5 0.02 11 22 1.56 

*Restarted from case Pe = 35 500 at t = 4.0 after initializing a new temperature field. 

Cross stream profiles of temperature statistics eva- 
luated from the plane channel flow simulations of 
liquid sodium are given in Fig. 6. All profiles are more 
or less symmetric to the center of the channel. The 
typical standard deviation tsd relative to local values is 
between 0.5 and 7 % for the temperature RMS values 
and heat fluxes evaluated directly, and between 8 and 
12 % for the heat flux correlation coefficients and the 
eddy diffusivities for heat which by definition both are 
composed of different single results. The nearly para- 
bolic temperature profiles are typical of conduction 
controlled flows. With increasing Reynolds or Peclet 
numbers the importance of turbulence increases. Ac- 
cordingly, the RMS values of the turbulent tempera- 
ture fluctuations and the turbulent heat flux (z&T’) 
become higher and the positions of the peaks move 
closer to the wall. The turbulent heat flux correlation 
coefficient shows nearly constant values in the outer 
parts of the channel with the higher Peciet number. In 
case of the lower Peclet number, the absolute value of 
the correlation coefficient increases as the walls are 
approached. The eddy diffusivity for heat increases 
with increasing Reynolds number. The maximum 
values, normalized by the thermal diffusivity a, confirm 
the very low contribution of the turbulent heat flux to 
the total flux in case of the lower Peclet number flow. 
Thus, both cases may be attributed to the transition 
range from molecular to turbulent heat transfer. 

The results of the evafuation of the annular flow 
simulations are presented in Fig. 7. All profiles ap- 
proach zero near the adiabatic outer wall. The radial 
heat flux correlation coefficients behave similarly, but 
there seems to be an indication of two approximately 
constant regions with different heights in the inner and 
outer halves of the channels. Again, the correlation 
coefficients for the lower Peclet numbers show a 
pronounced increase near the heated wall. The eddy 
diffusivity profiles are obviously not affected by the 
special thermal boundary conditions. The profiles 
show higher peaks near the outer wall, especially in 
case of the small ratios of radii of both low-Peclet 
number flows. The high-Peclet number profiles are not 
very different. It may be concluded that these results 
are near the limiting profile for high-Reynolds number 
flows of liquid mercury. 

In addition to these evaluations of the numerical 
time and space dependent results a lot of evaluations of 
other correlations are possible, chiefly those mainly 
governed by the resolved large-scale structure of 
turbulence. Some examples included in [7] are the 
temperature-temperature, the energy-temperature, 
and the pressure-temperature cross correlations. A 
complete plot output from the computer code includ- 
ing velocity and pressure statistics is given in [I31 for 
the annular Ilow with Pe = 700. 
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T'(t=L509,g=rc/81 Re=50000, Pr =0.7, Rl/R2=0.25 
A = 0.5 

T'(t= 5.207,~=~t/8 1 Re=lOOOOO ,Pr=0.0214, 
R,/R2= 0.479, A = 0.4 

0 1.6 Z 3.2 
T'(t=3.572,9==/8) Re=lOOOOO, Pr =O.O07, 
R,/R2= 0.25, A = 0.075 

FIG. 4. Contour line plots of instantaneous resolved temperature fluctuations 7” = T- (T) for annular 
flows of air, mercury, and liquid sodium. Sections along the mean flow direction 2. A = contour line 

increment. The dashed lines correspond to negative values. 

5. DlSCUSSIOlv OF NUMERICAL RESULTS 

To obtain an integral judgement on the simulated 

temperature fields we compare the evaluated Nusselt 
numbers in Fig. 8 with some empirical correlations 

taken from literature [14--181. The numerical data of 
the plane channels, which have two non-adiabatic 
walls, agree with the respective formulae by Grlber 
[14] and Dwyer [15]. For the annular flows with 
adiabatic outer walls, the empirical data scatter widely, 
both as a function of the molecular Prandtl number 
and the ratio of radii. The correlation by Barthels [18] 
follows the numerical results for liquid mercury. The 
numerical results for liquid sodium flows, valid for a 
radius ratio of 0.25, are below most results of the 
correlations. The only curve which follows all numeri- 
cal annular flow results, but gives slightly lower 

Nusselt numbers, is the curve by Grlber for a plane 
channel with one adiabatic wall. The large discrepan- 
cies between the empirical curves seem to be due to the 
problems in formulating radial eddy diffusivity profiles 

for annular channel flows. In plane channel flows no 
comparable difficulties appear, because the eddy diffu- 
sivity and eddy conductivity profiles may be approxi- 
mated by using the direct analogy to pipe flows, which 
have been investigated more thoroughly. 

A more detailed comparison ofthe numerical results 
with temperature profiles measured in an annular 
channel by Dwyer et al. [12] is made in Fig. 9. The 
temperature profiles are nearly identical. Due to the 
somewhat higher Reynolds number, the numerical 
results for the eddy conductivity profiles are also 
somewhat higher than the original and the smoothed 
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data calculated from the measured temperature profile what more steeply. All these results indicate the rather 
by Dwyer et al. The typical standard deviation in- complicated influence on the eddy conductivity of the 
dicates comparable uncertainties in the numerical and Reynolds number, Prandtl number, and of the radius 
the experimental results. ratio. 

Some further results for the eddy conductivity have 
been plotted over the Peclet number in Fig. 10. In the 
log-log-presentation selected the plane channel data 
follow a single straight line, independent on the 
Reynolds and Prandtl numbers. The line is parallel to 
the line through the experimental pipe data found by 
Fuchs [19]. The distance between both lines 
corresponds to a difference in Peclet number by 
approximately a factor of two. The difference arises 
from the different numbers of thermal boundary layers 
in both channels. The data of the annular flows follow 
neither line: The eddy conductivity results for the 
mercury flows with RI/R2 = 0.479, which almost ex- 
actly follow the smoothed experimental data by Dwyer 
et al. [12], show a flatter increase with increasing 
Peclet number than the plane channel data, whereas 
the sodium flows with RI/RI = 0.25 increase some- 

Also the advanced statistical turbulence models 
using additional transport equations for some turbul- 
ence quantities can be supported. By way of example, 
the peaks of the radial temperature RMS value profiles 
are plotted over the Peclet number in Fig. 11. The 
qualitative behaviour is largely comparable to that of 
the eddy conductivity. One important difference be- 
comes evident from the numerical air flow results and 
from the experimental pipe data for air included in the 
figure. For constant Prandtl numbers the RMS values 
at large Peclet numbers are shown to depend not on 
the Reynolds number or on the Peclet number. At 
medium and low Peclet numbers the RMS-values 
seem to depend mainly on the Peclet number. Further 
influences arise from the radius ratio and from the 
thermal boundary conditions. 

The experimental results for pipe flows [19-241 

T'it = 5.207, x1 =0.4) Re=lOOOOO, Pr =0.0214, 
R,/R,= 0.479, A= 0.4 

T'(t= 3.572,x,=0.4 1 Re'= 100000, Pr = 0.007, 
R,/R,= 0.25, A = 0.075 

FIG. 5. Contour line plots of instantaneous resolved temperature fluctuations for annular flows of mercury 
and liquid sodium. Sections perpendicular to the mean flow direction. 
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F‘K. 6. Cross-stream profiles of temperature statistics for plane channel flows of liquid sodium. (a) Time 
mean temperatures normalized by AT:,, = Tz,, - TG1 ; (b) resolved RMS-temperature values and (c) 

cross-stream turbulent heat fluxes; (d) heat flux correlation coefficients; (e) eddy diffusivities for heat. 
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FIG. 7. Radial profites oi’ temperature statistics for annular flows of liquid sodium and liquid mercury, (a) 
Time mean temperatures; (b) resolved RMS temperature values and (c) cross-stream turbulent heat fluxes ; 

(d) heat flux correlation coefficients; (e) eddy diffusivities for heat. 
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Nu RI/ R2 heated walls Pr 
1 Grhber 1970 1 2 
2 Dwyer 1965 1 2 
3 Griiber 1970 1 1 
L Kays,Leung 1963 .2 1 01 
5 Kays, Leung 1963 .5 1 03 

lo2 6 7 Dwyer Dwyer 1963 1963 .25 b79 1 1 8 
8 Barthels 1967 25 1 
9 Barthels 1967 .L79 I 
0 annulus 

> 
TURBIT-2 / 

A plane channel 

FIG. 8. Nusselt numbers !Vu = (&, + (icund):(icond evaluated from numerical results and from empirical 
formulations. “(Pr,) = 1 has been used for plotting some of the empirical curves. The Prandtl numbers of the 

numerical results are A, 8. Pr = 0.007; C. Pr = 0.0214; A, 0, Pr z 0,7(i) 
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FIG. 9. Temperature and eddy conductivity profiles evaluated from the numerical simulation. case I’r 
= 3110, compared to measured and deduced annular flow data by Dwyer et (II. 1121. 
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S$ 
--- pipe 0.25 Fuchs 1973 0 

I 
original 
smoothed 0.75 Dwyer et al 1977 

f 
original 

** smoothed 0.25 

0 
annulus D ;;;; TURBIT - 2 

d plane channel 0.25 

FIG. JO. Influence of Peclet number on the eddy conductivity normalized by the thermal diffusivity. 

Fuchs 1973 Na 
Bobkov et al 
Bobkov et al :z; I% 
Rust, Sesonske 1966 Hg 
Hochreiter , Sesonske 19% Hg 
Tanimoto, Hanratty 1963 air 
Lawn, White 1972 air 
annulus 
plane channel > 

TURBIT - 2 

, 

FIG. 11. Influence of Peclet number on the peaks of the radial temperature RMS-value profiles. Ail 
experimental data by [ 19-241 are for pipes. T* used for normalization of Fuchs’data has been deduced from 

his data for 7’and T+. For the symbols for the numerical results, see Fig. 8. 
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included in Fig. 11 scatter widely. This has also been 
found in the review by Lawn [4] for the RMS-values at 
a fixed point in the channel. The main reason for the 
scatter of the experimental data seems to be the limited 

frequency range of the sensors and the electronic 
equipment used [13] : For the Prandtl number of air, 

for example, the differences caused by slow sensors can 
be some 10 or 20% [8]. For the Prandtl number of 

liquid sodium the pipe data by Bunschi [ZS] permit the 
conclusion that the temperature RMS-values found by 
Fuchs [ 191 should be higher at least by 30 T,;) due to the 

high frequency cutoff used. Another open problem is 
the low frequency cutoff used in these experiments. 

The discussion of these uncertainties of experimen- 

tal temperature fluctuation results indicates why Lawn 
[4] was unable to verify hjs spectral theory in calculat- 
ing the heat flux correlation coefficient. The cor- 

responding experimental results scatter widely, be- 
cause they contain the uncertain RMS temperature 
fluctuations. While Lawn cites values for the cor- 

relation coefficient {at y = 0.25) between 0.15 and 2.3, 

the numerical data at the position of the maximum 
RMS temperature values, taken from Figs. 6 and 7 and 

gathered in Fig. 12, are around 0.45. The numerical 

results show a uniform decrease for each Prandtl 
number with increasing Peclet number. This decrease 

is mainly due to voiume averaging of the basic 
equations [equation (I)] over finite grid volumes : the 

sharp peak of the heat flux correlation coefficient very 
close to the wall, close to the outer edge of the 
conducting sublayer is not resolved by the grids used 

for air ffows, but is partly resolved for the liquid metal 
flows with small Peclet numbers (Figs. 6 and 7). The 

correlation coefficients react even less sensitively to 

changes in the Peclet number in the inner parts of the 
channels. Thus, the numerical data confirm the results 
of Lawn’s theory that the heat flux correlation coef- 

ficient is, if at all. a weak function of the Pedet number. 
except for the very low Peclet number cases with I:,~‘LI 
c 1 for which the convective turbulent heat flux is 
insignificant compared with the pure conductive heat 

flux. 

The method of direct numerical simuia~ion was 
applied in calculating turbulent liquid metal flows 
together with a theory to compute all coefficients of the 

subgrid scale models. The numerical results for the 

temperature fields react very insensitively to changes 
in the coefficients for the subgrid scale heat flux model 
determined theoretically. The temperature ~uctuation 

fields resulting from the low Peclet number simu- 
lations do not depend on any coefficients in the 
temperature equations ; qualitatively, the spatial struc- 

tures in these fields follow the tendencies of the results 
for higher Peclet numbers, for which the subgrid scale 

heat flux model is relevant. The Nusselt numbers in 

plane channel flows, and some temperature and eddy 
conductivity profiles in annular flows, agree with 
published experimental data. From this we conclude 

that the theory of calculating subgrid scale coefficients 
furnishes adequate results over the whole range of 
Peclet numbers under consideration. 

The turbulent heat flux data deduced from the 
numerical results indicatecomplex dependences on the 
Reynolds number, the Prandtl number, thermal boun- 
dary conditions and on the radius ratio. The large 
scatter of the empirical correlations for the Nusselt 

number in annular flows is mainly due to problems in 
formulating appropriate eddy conductivity profiles 
accounting for all cited parameters. The deduction of 
reasonable eddy cnnductivities or turbulent Prandtl 
numbers still remains an open problem for all liquid 

0.3 
1 

0 annulus 
b ptane channel > 

TURBIT- 2 

FIG. 12. Dependence of resolved radial heat flux correlation coefficient on the Peciet number at position fmax of the maximum ofthe RMS temperature values. Lines connect numerical results for cases with equal Prandtl 
numbers and radius ratios (for identification, see Fig. 8 and Table 1 I. 
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metal flows in annuli and other complicated channels. 

The eddy conductivity profiles for liquid metal annular 11. 

flows derived numerically in this work are the first data 
in the literature to be determined directly. These 
results can partly support the development of models 12. 

for the turbulent heat flux. 
Existing statistical data on turbulent temperature 

fluctuations in liquid metal flows show large un- 13, 

certainties. The main reason is the limited time re- 
solution capability in most experiments. The numeri- 

cal results for the RMS temperature fluctuations are 14. 

within the range of experimental data; for low Peclet 
numbers, they show qualitatively comparable func- 
tional dependence on Reynolds number, Prandtl 

number, and radius ratio as the eddy conductivity. The 15. 

radial heat flux correlation coefficient evaluated for all 

cases is close to most of the data published for air 

flows ; it is a very weak function of the Peclet number. 
16. 

Thus, these numerical results confirm Lawn’s theory. 

1 

2. 

6. 

7. 

8 
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SIMULATION NUMERIQUE DES FLUCTUATIONS TURBULENTES DE TEMPERATURE 
DANS LES METAUX LIQUIDES 

Rbsumk - On utilise la mtthode de simulation numerique directe pour ttudier les fluctuations de 
tempirature dans les &oulements de metal liquide pleinement d&velopp&. Des modtles a ichelle de sous- 
grille, utilisant une equation de transport, prennent en compte la turbulence non rtsolue par une grille aux 
diffirences finies. Un modtile sp&cial de flux de chaleur B sous-grille, pour les mCtaux liquides, est dtduit avec 
une methode de calcul des coefficients du modkle. Aux tris petits nombres de P&let, les temptratures 
deviennent inddpendantes des paramttres du modirle. 

Des r6sultats numtriqtes pour le nombre Nusselt dans les canaux plats et pour les profils radiaux de 
tempkrature et de diffusivite turbulente dans les espaces annulaires s’accordent avec des donnies publi&s. 
Les nombres de Nusselt dttermines numiriquement pour les espaces annulaires indiquent que plusieurs 
formules empiriques surestiment l’influence du rapport des rayons. Les rtsultats numeriques pour la 
conductiviti turbulente peuvent ctre utilisbs pour rtduire ces probldmes. Les propriCtts statistiques des 
fluctuations de tempkrature simul6es sont dans la bande de dispersion des donn&es expbimentales. Les 
resultats numCriques confirment la thdorie de Lawn en donnant des coefficients de correlation de flux de 

chaleur raisonnables et qui dependent seulement faiblement du problime des paramktres. 
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NUMERISCHE SIMULATION TURBULENTER TEMPERATURSCHWANKUNGEN 
IN FLtiSSIGMETALLEN 

Zusammenfassung-Die Methode der direkten numerischen Simulation wird zur Untersuchung von 
Temperaturschwankungen in voll entwickelten turbulenten Fhissigmetallstromungen benutzt. Mit 
Feinstrukturmodellen, fiir die eine zusatzhche Transportgleichung gelost wird, werden die nicht von den 
Maschennetzen aufgelosten Turbulenzanteile beriicksichtigt. Die Koeffizien ten des fur 
FliissigmetallstrGmungen vereinfachten Temperaturfeinstrukturmodells werden theoretisch bestimmt. Bei 
kleinen Peclet-Zahlen werden die berechneten Temperaturfelder unabhangig von Model1 parametern. 

Die numerisch bestimmten Nusselt-Zahlen fur Plattenkanale, und radialen Profile der Temperatur und 
der turbulenten Warmeaustauschgroge fur Ringspalte stimmen mit veroffentlichten Daten fur die Fluide 
Natrium und Quecksilber iiberein. Die numerisch bestimmten Nusselt-Zahlen fur Ringspalte deuten darauf 
hin, daB viele empirische Beziehungen den Einflug des Radienverhaltnisses iiberschatzen. Die berechneten 
Profile der turbulenten Wlrmeaustauschgroge konnen zur Beseitigung dieses Problems benutzt werden. 
Statistische Eigenschaften der simuherten Temperaturfluktuationen befinden sich innerhalb der 
Streubander experimenteller Daten. Die numerischen Ergebnisse hefern realistische 
WIrmestromkorrelationskoeffizienten, die zudem nur schwach von den Problemparametern abhangen : sie 

bestatigen damit die Theorie von Lawn. 

rlWCJIEHHOE MOAEJIWPOBAHME TYPSYJIEHTHLIX HYJIbCAUHti TEMHEPATYPbI 
B JKKMflKHX METAJIJIAX 

AHHorauHn-_ns wcnenoBaHm nynbcaueii rebmeparypbi nplc nontiocrbm pa3BsroM ryp6ynetimohl 

TeYeHAU XWIKHX MeTannOB HCIIOnb30BaH MeTOn npFIMOr0 WCneHHOrO MOnenMpOBaHNI. nOCKOJbKy 

DJIll pWIeHHR npo6neMbI ‘53BeCTHbIe FIOnCeTOYHbIe Moaene, OCHOBaHHble Ha OnHOM ypdB"eHklH rlepe- 

Hoca. HellOCTaTOSHbI, aBTOpOM npeanomeHbl cnewanbHa54 nomzeToqHafl rdoaenb TennonepeHoCa H 

,KKADKHX M‘?TaJU,aX li MeTOLl BbI'IHCneHIll MOnenbHbIX K03+$HUHeHTOB. npH O'IeHL Ma:,bIX 3Ha'IeHHIIX 

wcna neKne reh4neparypa nepecraer 3amicerb or napaMerpoe bfonem. PesynbTaTbi LiticneHHbIx 

pacqeroB wicna HyccenbTa nm nnocK&ix KaHanoB. a TaKTe npo@ne8 panuanbHoA reMnepaTypb1 H 

BHXpeBOti TeIlnOIIpOBOnHOCTH B KOnbUeBbIX KaHanaX COrnaCylOTCR C Ony6nHKOBaHHbIMH LIaHHbIMW. 

3Ha'IeHHS qHCJIa HyCCenbTa,paCCWTaHHble 4RCneHHbIM MeTOilOM EJllf KO."bUeBbIX KaHa.VOB. CBUilelC;lb- 

CTByIOT 0 TOM. ST0 MHOrHe B3 3MIl&fpWleCKkiX COOTHO"IeHHti nepeOUeHHBaH,T pOnL OTHOWCHNR 

paneycoe. fiattttbte wicneHHbIx pacqeTos npo&ineti ~etxpe~08 TenncmpoBonHocTIi MO~YT mxojlb30- 

BaTbCR&~X6OneeKOp~KTHOrO y'IeTa BnWIlHWIl naHHOr0 E3paMCTpa. CTaTPlCTHWCKHC XapaKTCpHCTNKM 

CMO~en~pOBaHHbIX nyJIbCaU&iii TeMnepaTypbI He BbIXOAflT 38 IIOnOCy pa36poca 3KCnCpHMeHTWIbHblX 

3HaYeHHk AaHHbIe '1NCneHHbIX paCYeTOB nOnTBepWlaIOT pe3ynbTaTbI n~WIOXKeHHOr0 flOyItOM MO- 

nenbHor0 KoppennusoHHoro onm!aHm TennonepeHoca B msmax MeTannax, mmuwie npeemerdbte 

3HaveHm K03@@iuHeHToB Koppenawiif nm Tennoeoro noToKa. 


